Creating Sequences

Directions: Using the digits 0-9, at most one time each, complete the first three terms of the arithmetic and geometric sequences. What sequences result in the greatest sum of their second terms? (e.g. 3, 5, 7 and 2, 6, 18 would result in a sum of 5 + 6 = 11). What sequences result in the least sum of their second terms?

Hint

Hint

The maximum sum would be 17, with the 8 and the 9 digits as the second terms of each sequence. Can this be done? There are only six possible geometric sequences with the given constraint… what are they?

Answer

Answer

The greatest sum is 15. There are three ways to get this: 4, 6, 8 and 3, 9, 27; 5, 7, 9 and 4, 8, 16; and 5, 7, 9 and 1, 8, 64. The least sum is 9. There is one way to get this sum: 1, 3, 5 and 2, 6, 18.

Source: Erick Lee

Print Friendly, PDF & Email

Check Also

What’s Your Sine?

Directions: Use the digits 1 through 9, at most one time each, to fill in …

2 comments

  1. It seems as though the solution to the least sum is incorrect, as the number 1 is used twice.
    I found the patterns 0,3,6 and 1,2,4 with a least sum of 5.

Leave a Reply

Your email address will not be published. Required fields are marked *